
Faculty Computer Science
Artificial Intelligence and Data Science
Date: 04.02.2025

 Technische Hochschule Deggendorf
Dieter-Görlitz-Platz 1
94469 Deggendorf

Tel.: +49 991 3615-0
Fax: +49 991 3615-297

www.th-deg.de
info@th-deg.de

Electives
Artificial Intelligence and Data Science

Summer Semester
Faculty Computer

Science Date: 04.02.2025

Table of Contents

Bachelor Modules
AIN-B Computational Logic
AIN-B Computer Vision
AIN-B Natural Language Processing
AIN-B Human Factors and Human-Machine Interaction

Master Modules
AIX-M Datacenter Network Programming
LSI-M Data Visualisation
HPC-M Software Engineering
HPC-M HPC/QC Technology
AIX-M Quantum Chemistry

AIX-M ChatGPT et al.: Gernerative AI with Transformers
ET-M Advanced Programming Techniques
ET-M Advanced Modelling and Simulation
ASE-M Digital Car / Innovation Management & Customer Design
ASE-M Advanced Driver Assistance Systems

Advanced language course level A2 - Language Center

dkoch
Durchstreichen

Faculty Computer Science
Artificial Intelligence and Data Science
Date: 04.02.2025

 Technische Hochschule Deggendorf
Dieter-Görlitz-Platz 1
94469 Deggendorf

Tel.: +49 991 3615-0
Fax: +49 991 3615-297

www.th-deg.de
info@th-deg.de

Electives
Artificial Intelligence and Data Science

Summer Semester
Faculty Computer

Science Date: 04.02.2025

Generell Information

The module handbook applies to Electives 1–4. Electives from the bachelor’s course
Artificial Intelligence AIN-B can only be chosen for Electives 1 and 2 in the first
semester.

In addition to the subject-specific compulsory elective modules, which are offered in
English, students may choose individual an advanced language course A2 as elective 4,
in the same language that you have your language course A1.

The list includes only electives offered at DIT. Students can also choose additional
electives offered at USB.

Important: If German is specified as the language of instruction for an elective course,
then the examination will also be conducted in German!

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

AIN-B-11 Computational Logic

Module code AIN-B-11

Module coordination Thomas Ewender

Course number and name AIN-B-11 Computational Logic

Lecturers Prof. Dr. A Admin

Thomas Ewender

Semester 2

Duration of the module 1 semester

Module frequency annually

Course type required course

Level Undergraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination written ex. 90 min.

Duration of Examination 90 min.

Weighting of the grade 5/120

Language of Instruction English

Module Objective

Students aquire understanding and hands-on experience of various logical systems and
their usage in artificial intelligence applications..

Specifically, students will have achieved the following outcomes upon completion of the
module:

Subject competency
Students understand the significance of logic for intelligent problem-solving.

Methodological competency

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

Students select the most appropriate logical system for solving a concrete practical
problem, and use it to implement software-based solutions.

Personal competency
Students understand complex theoretical concepts and apply them to problems arising in
practice.

Social competency
Students communicate clearly, argue and criticize logically and constructively, contribute
to reasoned, team-oriented problem solving processes in the group.

Applicability in this and other Programs

Logic is foundational for all computer science courses and programmes. This module is a
pre-requisite for the more advanced artificial intelligence lectures that build upon it.

Entrance Requirements

Recommended:

- Mathematics 1

- Foundations of Computer Science

Learning Content

Formal Logic: Syntax and Semantics
- Introduction to logical languages

- Basic concepts of logic

- Propositional logic

- Predicate (first-order) logic

- Formal proofs

- Set theory

- Classical semantics for first-order logic

- Resolution for propositional and first-order logic

- Semantics of logic programming

Logical Programming
- Prolog

- Answer Set Programming

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

Teaching Methods

- Interactive lectures
- Practical exercises using automatic proof checkers and theorem provers
- Software implementation of application-oriented examples

Recommended Literature

- Barwise, J und Etchemendy, J: Language, Proof and Logic , CSLI 2003 (or
newer)

- Lifschitz, V.: Answer Set Programming , Springer Verlag 2019
- Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in

Practice , Morgan & Claypool Publishers, 2013

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

AIN-B-22 Computer Vision

Module code AIN-B-22

Module coordination Prof. Dr. Patrick Glauner

Course number and name AIN-B-22 Computer Vision

Semester 4

Duration of the module 1 semester

Module frequency annually

Course type required course

Level Undergraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination project work

Weighting of the grade 5/210

Language of Instruction English

Module Objective

The aim of this class is to discuss Computer Vision (CV), which allows computers
to process visual inputs. We deal every day dozens of times with CV, such as facial
recognition, real-time translating camera input or auto-tagging friends in photos. Modern
CV algorithms are strongly based on machine learning methods, in particular deep neural
networks. Students will acquire knowledge in CV and be able to elaborate it further in the
future, for example in projects or further studies. Overall, CV is a cutting-edge eld, with
many high-pay opportunities for graduates.

Specifically, students will have achieved the following learning outcomes upon completion
of the module:

Subject competency
Students will understand the concepts of the most common methods in computer vision. (2
- Understanding)

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

Methodological competency
Students will have the ability to develop high-quality programs using computer vision
technologies. (3 - Apply)

Personal competency
Students will be able to implement their own algorithms and defend them against
competing approaches. (6 - Create)

Social competency
Programming exercises take place as part of the course. Students are thus able to
understand, critique, and complement programs of other students. (5 - Assess)

Applicability in this and other Programs

Including, but not limited to, the following modules:

- AI Project
- Deep Learning/Big Data

Entrance Requirements

- Programming, ideally in Python
- Algorithms and data structures
- (Some) mathematics

Learning Content

- Introduction: applications, computational models for vision, perception and
prior knowledge, levels of vision, how humans see

- Pixels and filters: digital cameras, image representations, noise, filters, edge
detection

- Regions of images and segmentation: segmentation, perceptual grouping,
Gestalt theory, segmentation approaches, image compression

- Feature detection: RANSAC, Hough transform, Harris corner detector
- Object recognition: challenges, template matching, histograms, machine

learning
- Convolutional neural networks: neural networks, loss functions and

optimization, backpropagation, convolutions and pooling, hyperparameters,
AutoML, efficient training, selected architectures

- Image sequence processing: motion, tracking image sequences, Kalman
filter, correspondence problem, optical flow

- Foundations of mobile robotics: robot motion, sensors, probabilistic robotics,
particle filters, SLAM

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

- Outlook: 3D vision, generative adversarial networks, self-supervised
learning, vision transformers

Teaching Methods

- Lectures
- Projects

Recommended Literature

- C. Bishop and H. Bishop, " Deep Learning: Foundations and Concepts ",
Springer, 2024.

- R. C. Gonzalez and R. Woods, " Digital Image Processing ", Pearson, 4th
edition, 2018.

- I. Goodfellow, Y. Bengio and A. Courville, " Deep Learning ", MIT Press,
2016.

- S. Russell and P. Norvig, " Artificial Intelligence: A Modern Approach ",
Pearson, 4th edition, 2021.

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

AIN-B-19 Natural Language Processing

Module code AIN-B-19

Module coordination Prof. Dr. Udo Garmann

Course number and name AIN-B-19 Natural Language Processing

Semester 4

Duration of the module 1 semester

Module frequency annually

Course type required course

Level Undergraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination Exercise Performance, written ex. 90 min.

Duration of Examination 90 min.

Weighting of the grade 5/210

Language of Instruction English

Module Objective

The goal of this module is to learn Natural Language Processing (NLP), which enables
computers to process human language. We engage in NLP dozens of times a day, such
as performing a Google search, correcting spelling on a smartphone, classifying email as
spam, or recognizing handwriting. Modern NLP algorithms are heavily based on machine
learning methods. The students acquire knowledge of NLP and can deepen this in the
future, e.g. in projects or further studies.

The students know terms from linguistics such as syntax, semantics, etc. They understand
the different structures of language. Understand and apply regular expressions (analysis
and application) in Python. The students know the Natural Language Toolkit (NLTK). You
can use the NLTK for different forms of language processing.

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

In detail, the students have achieved the following learning outcomes after completing the
module:

Professional competence
Students understand the concepts of the most common approaches to language
processing. (2 - understanding)

Methodical competence
Students have the ability to create high quality programs using speech understanding
technologies. (3 - Apply)

Personal competence
The students can implement their own methods and defend them against competing
approaches. (6 - Create)

Social skills
Programming exercises take place as part of the course. The students are thus able to
understand, criticize and complement the programs of other students. (5 - judge)

Applicability in this and other Programs

AI-Project

Deep Learning/Big Data

Entrance Requirements

Recommended:

Mathematics 2

Programming 2

Algorithms and Data structures

Learning Content

Basics: stemming, stopwords, n-grams
Text classification: Naïve Bayes, spam filtering, speech recognition, logistic regression
spelling correction
Search engines: ranking, vector space model, PageRank
Basics of formal languages (related to NLP problems)
Regular Expressions and Finite State Machines (Related to NLP Problems)
Context-free grammars (related to NLP problems)
Analysis of the speech signal
Outlook: Embeddings, current advances in NLP

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

Teaching Methods

Lectures
Discussion of scientific articles and breaking news
Exercises, including computer exercises (proof of achievement)

Recommended Literature

- S. Bird, E. Klein and E. Loper, " Natural Language Processing with Python
Analyzing Text with the Natural Language Toolkit ", Online at [NLTK
website](https://www.nltk.org/book), visited 20/03/31.

- C. Bishop, " Pattern Recognition and Machine Learning ", Springer, 2006.
- D. Jurafsky, " Speech and Language Processing, An Introduction to

Natural Language Processing ", Computational Linguistics, and Speech
Recognition, Third Edition draft, available online at [Jurafsky:Homepage]
(https://web.stanford.edu/~jurafsky), visited 20/03/31.

- C. Manning, P. Raghavan and H. Sch#ütze, " Introduction to Information
Retrieval ", Cambridge University Press, 2008.

- B. Pfister und T. Kaufmann, " Sprachverarbeitung, Grundlagen und
Methoden der Sprachsynthese und Spracherkennung ", 2., aktualisierte
und erweiterte Auflage, Springer-Verlag GmbH Deutschland 2017, ISBN
978-3-662-52837-2.

- S. Russel and P. Norvig, " Artificial Intelligence: A Modern Approach ",
Prentice Hall, third edition, 2009.

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

AIN-B-20 Human Factors and Human-Machine
Interaction

Module code AIN-B-20

Module coordination Prof. Dr. Christina Bauer

Course number and name AIN-B-20 Human Factors and Human-Machine
Interaction

Semester 4

Duration of the module 1 semester

Module frequency annually

Course type required course

Level Undergraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination Portfolio

Weighting of the grade 5/210

Language of Instruction English

Module Objective

Students understand and communicate the fundamental concepts of human-machine
Interaction.

Specifically, students will have achieved the following outcomes upon completion of the
module:

Subject competency
- Application of human factor principles to a specific domain
- Identification of various influences on the quality of work and interaction

Methodological competency
- Knowledge of various methodological approaches for investigating and

evaluating human-machine interaction

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

- Systematic analysis and classification of situational influences
- Systematic analysis of error sources and types

Personal competency
- Realistic assessment of systemic influences on the work situation
- Improvement of team skills through knowledge of group mechanisms

Social competency
Students evaluate different user interface designs in exercise sessions. Thus, they able to
understand and criticize different design decision and can justify their analyses.

Applicability in this and other Programs

All modules in which the consideration of human-computer-interaction mechanisms is a
central subject.

Entrance Requirements

none

Learning Content

Introduction to the field of human-machine interaction

- Design of everyday objects
- Cognitive fundamentals
- Phenomena and mechanisms of attention

Information design

- Presentation of information
- Display design principles

Usability, UX

- Terms, models, processes
- Analysis methods
- Evaluation methods

Teaching Methods

- Interactive lectures
- Exercise sessions
- Group work

Faculty Computer Science
Artificial Intelligence

04.02.2025 15:37

Recommended Literature

- Krug, S. (2013), Dont Make Me Think: A Common Sense Approach to Web
Usability, 3rd revised edition, New Riders

- Norman, D. A. (2013), The design of everyday things, Basic Books, New
York, NY

- Shneiderman, B., & Plaisant, C. (2010), Designing the user interface:
strategies for effective human-computer interaction, Addison-Wesley,
Boston

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

AIX-M-2 Datacenter Network Programming

Module code AIX-M-2

Module coordination Prof. Dr. Andreas Kassler

Course number and name AIX-2 Datacenter Network Programming

Lecturer Prof. Dr. Andreas Kassler

Semester 2

Duration of the module 1 semester

Module frequency annually

Course type compulsory course

Level

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 90 hours

self-study: 60 hours

Total: 150 hours

Type of Examination written ex. 90 min.

Duration of Examination 90 min.

Weighting of the grade 5/210

Language of Instruction English

Module Objective

Students acquire understanding and hands-on experience of how the data plane of
modern datacenter networking equipment can be programmed using the high-level and
popular programming language P4 (see http://p4.org). They learn the basic concepts
of the P4 language and understand, how offloading simple computational tasks to
the data plane of programmable networking devices (such as datacenter routers or
network cards) can be used to speed up the performance of Deep Learning, Big Data
Analytics use-cases within modern datacenters. They understand, how the data plane
can be used to accelerate distributed high-performance computing (HPC) building blocks
including distributed key-value stores, where load-balancing and network monitoring of the
datacenter networking fabric is important for achieving high speed and low latency.

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

They setup their own development environment in the network emulator Mininet and
implement simple data plane programs in the P4 language. They know how to use P4 to
parse packet headers, apply different actions and modify packets before forwarding them.
They know basic P4 constructs, how to store stateful information (e.g. parts of a neural
network) and how to perform simple computational tasks in the data plane.
Based on this knowledge and understanding, students implement a small-scale project
in a team. They use their acquired knowledge on P4 and programmable datacenter
networking. They evaluate the results of other project groups and get evaluated by other
groups. For this project work, they have used standard tools (Mininet, P4 toolchain,
command line interface) for programming the data plane of an (emulated) datacenter
router.
After finishing this module, students can design, implement and evaluate their own P4
programs using the network emulator Mininet.

Specifically, students will have achieved the following outcomes upon completion of the
module:
Subject competency
Students understand the significance of datacenter network programming and how
datacenter network programming can be used to improve the performance of distributed
high-performance applications such as distributed training and inference of large-scale ML
models.
Methodological competency
Students select the most appropriate P4 constructs for solving a concrete practical
problem and use it to implement a concrete use-case of a data plane program.
Personal competency
Students understand complex theoretical concepts and apply them to problems arising in
practice.
Social competency
Students communicate clearly, argue and criticize logically and constructively, contribute
to reasoned, team-oriented problem-solving processes in the group.

Applicability in this and other Programs

This Module is suitable for the following programs:
- Master in Angewandte Informatik/Infotronik
- Master in Artificial Intelligence and Data Science
- Master in High Performance Computing/Quantum Computing

Entrance Requirements

Students should have basic understanding of Network Technologies and/or
Communication Networks. Basic knowledge of Programming and basic knowledge in
Python helps in the Project Part of the course.

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

Learning Content

The Module is decomposed into two parts:
Part I: ?Introduction to Datacenter Network Programming? and Part II ?Project in
Datacenter Network Programming?
Content Part I:
(1) Introduction to Programming the Data Plane of a Datacenter networking device:
- Difference between Data and Control Plane
- Introduction to P4 language
- P4 programming model
- Compiling and deploying P4 programs
- P4 Targets: Behavioral Model (BMv2), Programmable Switching ASIC Intel Tofino,
Mellanox Bluefield DPU, Netronome SmartNIC
- Basic P4 concepts: header parsing, applying tables and actions, header rewriting.
- Workshop: Setup Development environment with Mininet and Command Line Interface
(CLI), implement, test and debug simple P4 language constructs and programs using the
Mininet network emulator
(2) Datacenter Networking and Load Balancing:
Faculty Computer Science
Artificial Intelligence and Data Science
Date: 22.11.2022
- Datacenter networking fundamentals, routing and forwarding within the datacenter
networking fabric
- Workshop: Advanced P4 concepts: stateful information, register arrays, counters and
meters.
- Loadbalancing in Datacenter networks, Equal Cost Multipath Routing, Conga, Hula
- Workshop: Implementing ECMP in P4
(3) In Network support for Monitoring and Caching:
- Active and passive network monitoring
- Inband Network Telemetry (INT) for fine-granular network monitoring
- Accelerating Distributed Key-value stores in the data plane of the data center
- Using telemetry for fine-grained loadbalancing
- Workshop: Implementing Hula and INT in P4
(4) In Network support for Distributed Machine Learning:
- Role of the datacenter network for distributed training and inference
- In network support for Distributed Machine Learning Inference for in-switch traffic
classification
- Mapping trained machine learning models (decision trees, SVMs, neural networks) to
programmable data plane devices
- In network support for distributed training within a datacenter network
Content Part II:

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

Project: Implementation of your own small dataplane program in P4 and testing it in the
Mininet network emulator.

Teaching Methods

- Interactive lectures
- Practical workshop style exercises using the network emulator Mininet
- Software implementation of your own P4 program

Remarks

The module is comprised of two parts. The second part (project work) can be done in
groups of max. 3 students.

Recommended Literature

Recommended Literature will be provided at the start of the course by a set of research
and practical oriented articles that are available online.

Faculty Computer Science
Life Science Informatics

04.02.2025 15:44

LSI-12 Data Visualization

Module code LSI-12

Module coordination Prof. Dr. Phillipp Torkler

Course number and name LSI-12 Data Visualization

Lecturers Prof. Dr. Phillipp Torkler

Prof. Dr. Javier Valdes

Semester 2

Duration of the module 1 semester

Module frequency annually

Course type required course

Level Postgraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 45 hours

virtual learning: 45 hours

Total: 150 hours

Type of Examination written student research project

Weighting of the grade 5/90

Language of Instruction English

Module Objective

Data Visualization is the graphic representation of a data analysis to achieve clear and
effective communication of results and insights. Complex ideas are presented in charts
and graphs with the goal of quickly and easily disseminating key, actionable information.
Data visualization is an essential part of data science and analytics, especially when
working with large, complicated data sets like sequencing data. The visualization tells a
story, whether as a stand-along graph or combined with other graphs, charts and design
elements in an infographic or dashboard.

After completing the Data Visualization module, students will have obtained the following
learning competencies:

Faculty Computer Science
Life Science Informatics

04.02.2025 15:44

Professional competence
After successfully completing the module, students will:

- know the data visualization principles.
- be familiar with file formats and their usage in the different analysis

approaches.
- know about common data analysis workflows and be able to interpret and

visualize the achieved results.
Methodological competence
After successfully completing the module, students will:

- know how to use ggplot2 in R to create custom plots.
- know how to use matplotlib and Python to create custom plots.

Social competence
- Interdisciplinary and interpersonal collaboration when working together in

small groups on developing R and Python scripts for data analysis and data
visualization.

- Working together with fellow-students in small groups on designing and
developing biostatistical validation of biomedical datasets within R and/or
Python.

Applicability in this and other Programs

master seminar, master thesis

Entrance Requirements

Recommended or advantageous:

Basic Knowledge in R

Module: LSI-04 Biostatistics I

Learning Content

1 R Packages for data visualization
2 Open access visualization tools
3 Matplotlib and other Python packages for data visualization
4 Theoretical Background
5 Perception And Interpretation

Teaching Methods

Tutorial, practical exercises, application examples

Faculty Computer Science
Life Science Informatics

04.02.2025 15:44

The module consists of an interactive theoretical part with blended learning components.
Within the tutorial the students use example NGS datasets to perform the biomedical
data visualization. In the practical part of the tutorial the students should learn to find
various visualization tools, possibilities and methods and discuss their advantages and
disadvantages to represent statisitical significance.

Remarks

The iLearn teaching and learning platform provides students with additional literature
references and learning material to prepare for the lectures.

Recommended Literature

Detailed lecture notes are available online for preparation and follow-up work

- The Biostars Handbook: Bioinformatics Data Analysis Guide; 2019; https://
www.biostarhandbook.com/

Faculty Computer Science
High Performance Computing / Quantum Computing

04.02.2025 15:44

HPC-04 Software Engineering

Module code HPC-04

Module coordination Prof. Dr. Christoph Schober

Course number and name HPC-4 Software Engineering

Lecturer Prof. Dr. Christoph Schober

Semester 1

Duration of the module 1 semester

Module frequency annually

Course type required course

Level postgraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination written ex. 90 min.

Duration of Examination 90 min.

Weighting of the grade 5/90

Language of Instruction English

Module Objective

Software Engineering for HPC/QC aims at bringing the students of various backgrounds
to a common understanding of the processes required to deliver software fulfilling the
requirements with high quality. This includes theoretical knowledge about classical
software engineering, but focus clearly on practical knowledge and skills required in
modern software development such as version control, automated testing, containerization
and Continuous Integration and Delivery (CI/CD).

Professional skills
Students will know how software projects are managed and which different methodologies
exists. Within the context of HPC/QC they are able to understand advantages and
disadvantages of each method and know the differences to other fields of software

Faculty Computer Science
High Performance Computing / Quantum Computing

04.02.2025 15:44

engineering. They learn how software requirements are collected, prioritized and planned
for implementation in an agile development process. Students learn about modern
technology and tooling such as version control, automated testing, containerization and
DevOps.

Methodological skills
Within the course the students will apply the knowledge of each theoretical block in short
in-class and homework exercises, enabling them to work through a practical software
project from requirements engineering to productive deployment using CI/CD. They get
a hands-on impression of a set of tools and frameworks used in the industry and can use
this knowledge to quickly understand any similar tool.

Social skills
Students understand the importance of communication and cooperation between
stakeholders (internal and external) and the development team. They experience and
practice this with exercises in small groups.

Personal skills
With the knowledge of this course the students will understand the importance of modern
engineering technology to deliver high quality software. This enables them to work both in
academic or industrial settings with ease and focus on the value of their work delivered to
their stakeholders.

Applicability in this and other Programs

Software design and programming lectures

Entrance Requirements

None

Learning Content

The module is organized along the stages of the Software Development Lifecycle.

Introduction
- Software Engineering and HPC/QC
- Scientific software development

Requirement Analysis and Planning
- What is a project?
- How are software projects managed? (Waterfall, Agile)
- Agile by example: Scrum
- User stories, estimation, priorization and planning

Software Development and Testing

Faculty Computer Science
High Performance Computing / Quantum Computing

04.02.2025 15:44

- Version control with Git
- Platforms for working with Git
- Code Reviews and Code Quality
- Testing

- Unit-, Integration- and End2End-testing
- Test automation
- Test coverage

- Writing testable code
- The role of architectures (MVC, Hexagonal,)
- Design patterns

Deployment
- Containerization
- Introduction to DevOps
- CI with Gitlab

- Test automation
- Test coverage
- Code Quality Metrics

- CD with Gitlab
- Build and Package
- Automated Deployment

Teaching Methods

Lecture with exercises

Recommended Literature

Online Resources

- Introduction to Git: https://git-scm.com/docs/gittutorial
- Introduction to Gitlab: https://docs.gitlab.com/ee/tutorials/
- Introduction to Gitlab CI/CD: https://docs.gitlab.com/ee/ci/

Books

- Software Engineering: Basic Principles and Best Practices (Ravi Sethi)
- Scrum for dummies (ISBN 978-1-119-90467-0): https://

ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=7109023
(English)

- Scrum: kurz & gut (ISBN 9783868998337) (German)
- Andrew S. Tanenbaum; Herbert Bos. Modern Operating Systems. Prentice

Hall, 4th ed. 2014
- Evi Nemeth, Garth Snyder, Trent R. Hein et al. Unix and Linux System

Administration Handbook. Addison-Wesley, 5th ed. 2018

Faculty Computer Science
High Performance Computing / Quantum Computing

04.02.2025 15:44

- Christine Bresnahan, Richard Blum. Mastering Linux system
administration. Wiley. 2021. https://ebookcentral.proquest.com/lib/th-
deggendorf/detail.action?docID=6658986

Faculty Computer Science
High Performance Computing / Quantum Computing

04.02.2025 15:44

HPC-07 HPC/QC Technology

Module code HPC-07

Module coordination Prof. Dr. Helena Liebelt

Course number and name HPC-7 HPC/QC Technology

Lecturer Prof. Dr. Helena Liebelt

Semester 1

Duration of the module 1 semester

Module frequency annually

Course type required course

Level postgraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination StA

Weighting of the grade 5/90

Language of Instruction English

Module Objective

In this module, students delve into the intricacies of High Performance Computing (HPC)
and/or Quantum Computing (QC) systems, gaining a comprehensive understanding of
the technological challenges specific to these cutting-edge fields. Through a blend of
theoretical learning and hands-on experience, students familiarize themselves with the
hardware technologies essential to these domains. Through practical sessions, they
acquire invaluable skills in system assembly and configuration, empowering them to
proficiently set up components of modern HPC systems. Additionally, students learn the
nuances of system installation and configuration on a smaller scale, equipping them with
the capability to effectively deploy and manage these advanced computing systems.

Professional skills

Faculty Computer Science
High Performance Computing / Quantum Computing

04.02.2025 15:44

Professional Skills: Students develop a range of professional skills essential for success
in the field of High Performance Computing (HPC) and/or Quantum Computing (QC)
systems. They refine their ability to analyze complex technological issues specific to these
domains, employing critical thinking and problem-solving techniques to address challenges
effectively. Through hands-on experience in system assembly and configuration,
students enhance their technical proficiency, ensuring they are adept at deploying and
managing modern HPC systems. Furthermore, students cultivate strong communication
skills, enabling them to articulate their ideas and solutions clearly to peers and industry
professionals.

Methodological skills
This module hones students' methodological skills, providing them with a structured
framework for approaching problems in HPC and/or QC systems. Students learn
systematic approaches to system setup, installation, and configuration, ensuring precision
and efficiency in their work. They develop robust methodologies for troubleshooting
and debugging, equipping them with the ability to identify and resolve issues promptly.
Additionally, students learn to conduct thorough research, staying abreast of the latest
advancements in hardware technologies relevant to the field.

Social skills
In addition to technical expertise, students refine their social skills, recognizing the
collaborative nature of the HPC and/or QC ecosystem. Through group projects and
collaborative tasks, students learn to work effectively as part of a team, leveraging each
other's strengths to achieve common goals. They develop interpersonal skills such as
active listening, constructive feedback, and conflict resolution, fostering a positive and
productive team dynamic. Furthermore, students engage in networking opportunities
with industry professionals, enhancing their ability to build and maintain professional
relationships within the field.

Personal skills
This module also focuses on the development of personal skills essential for professional
growth and success. Students cultivate traits such as adaptability and resilience, learning
to navigate the dynamic landscape of HPC and/or QC systems with confidence. They
hone their time management and organization skills, balancing academic coursework with
hands-on practical sessions effectively. Additionally, students foster a growth mindset,
embracing challenges as opportunities for learning and growth. By prioritizing self-
reflection and continuous improvement, students develop into well-rounded individuals
prepared to excel in the rapidly evolving field of high-performance computing.

Applicability in this and other Programs

Hardware / system design for complex modern computing systems

Faculty Computer Science
High Performance Computing / Quantum Computing

04.02.2025 15:44

Entrance Requirements

Prerequisites for this module on a master's level would typically include:

1. Foundational Knowledge in Computer Science or Related Field: Students should
have a solid understanding of computer science fundamentals, including data structures,
algorithms, computer architecture, and operating systems.

2. Programming Proficiency: Proficiency in at least one programming language commonly
used in high-performance computing, such as C/C++, Python, or Fortran, is essential.
Students should be comfortable writing, debugging, and optimizing code.

3. Mathematical Background: A strong background in mathematics, particularly in areas
such as linear algebra, calculus, and probability theory, is necessary for understanding the
underlying principles of high-performance computing and quantum computing.

4. Understanding of Parallel Computing Concepts: Familiarity with parallel computing
concepts and techniques is crucial, including parallel algorithms, parallel programming
models (e.g., MPI, OpenMP, CUDA), and parallel computing architectures.

5. Basic Knowledge of Hardware Systems: Students should have a basic understanding of
computer hardware components and architecture, including processors, memory systems,
storage devices, and networking.

6. Prior Experience with Operating Systems: Familiarity with operating systems concepts
and administration is beneficial, as students will be involved in setting up and configuring
computing systems.

7. Experience with Command-Line Interface (CLI) Tools: Proficiency in using command-
line interface tools and Unix/Linux operating systems is important for executing
commands, managing files, and interacting with the computing environment.

8. Probability and Statistics: Some familiarity with probability and statistics is
advantageous, especially for students interested in quantum computing, as it provides the
foundation for understanding quantum algorithms and quantum information theory.

9. Critical Thinking and Problem-Solving Skills: Strong critical thinking and problem-solving
skills are essential for analyzing complex technological issues and developing effective
solutions in the context of high-performance and quantum computing systems.

10. Research Skills: Students should possess basic research skills, including the ability
to gather, evaluate, and synthesize information from academic literature, technical
documentation, and online resources related to high-performance and quantum
computing.

These prerequisites ensure that students have the necessary background knowledge and
skills to fully engage with the advanced topics covered in the module and to successfully
complete hands-on practical sessions and assignments.

Faculty Computer Science
High Performance Computing / Quantum Computing

04.02.2025 15:44

Learning Content

The aim of this course is to discover the technological paticularities of HPC and QC
systems.

The module is divided into two parts, both covering theoretical as well as practical aspects
including hands-on sessions:

- Hardware
- Setting up a compute node
- Rack technologies
- Cooling aspects

- Software
- Setting up an operating system
- Middleware
- Access and scheduling

Teaching Methods

Lecture with lab sessions / exercises

Recommended Literature

- Andrew S. Tanenbaum; Herbert Bos. Modern Operating Systems. Prentice
Hall, 4th ed. 2014

- Evi Nemeth, Garth Snyder, Trent R. Hein et al. Unix and Linux System
Administration Handbook. Addison-Wesley, 5th ed. 2018

- Christine Bresnahan, Richard Blum. Mastering Linux system
administration. Wiley. 2021. https://ebookcentral.proquest.com/lib/th-
deggendorf/detail.action?docID=6658986

- Further literature as indicated in the lecture

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

AIX-M-11 Quantum Chemistry

Module code AIX-M-11

Module coordination Prof. Dr. Christoph Schober

Course number and name AIX-M-11 Quantum Chemistry

Lecturer Prof. Dr. Christoph Schober

Semester 2

Duration of the module 1 semester

Module frequency annually

Course type compulsory course

Level postgraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination oral ex. 20 min.

Weighting of the grade according to ECTS

Language of Instruction English

Module Objective

The module provides an introduction to simulation of materials for students of
computer science. It aims to do so without
requiring deeper knowledge of chemistry or quantum mechanics, but a general
understanding of chemistry/physics on highschool level is advantageous.

Questions that will be answered are:

- What are typical problems that are solved?
- Is quantum chemistry only suitable for high performance computers?
- Is quantum chemistry used in the industry?

Knowledge and understanding
The students will obtain a broad overview of the field of quantum chemistry and
its different flavors (such as wave-function based methods and density based

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

methods to calculate properties of materials). They gain an understanding of
the computational complexity and scalability of different levels of theory and
their requirements in terms of computational power. Knowing the constraints of
classical quantum chemistry students will be able to understand the potential
of Quantum Computing for quantum chemistry. They understand the ideas behind
the Variational Quantum Eigensolver for NISQ (Noisy Intermediate Scale Quantum)
devices.

Application, utilisation and generation of knowledge
The students are able to assess the basic applicability of a computational
quantum chemistry method for different simulation tasks in material science or
pharmaceutical research. With their broad overview students are able to dive
deeper into specific topics by using the appropriate scientific literature.

Communication and Cooperation
Students learn to express requirements and translate them from an non-domain
perspective (e.g., a scientist requiring a computational scanning probe image
to compare with an experimental image) to a domain specific solution (e.g.,
calculating the electron density using DFT to gennerate a STM image)

Applicability in this and other Programs

This module can be used as elective (master level) for other degrees

Entrance Requirements

- Linear Algebra (matrices, dot product, ...)
- Familiarity with Python or other scripting languages
- Basic knowledge of quantum mechanics is advantageous, but not a

requirement

Learning Content

The course will start with an introduction of quantum chemistry for
non-(quantum)-chemists, a brief history and applications in academia and
industry.

We will then look at one of the foundations of quantum chemistry, the
Hartree-Fock method, to solve the Schrödinger equation. You will create a basic
implementation of Hartree-Fock (almost) from scratch using Python and calculate
the properties of some simple systems.

Building up on this knowledge we look at the current "zoo" of quantum chemistry
methods and their possibilities (and limitations). You will then use ASE, the
"atomic simulation environment" (https://wiki.fysik.dtu.dk/ase/), to calculate

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

properties of materials (such as the structure of water) using different
methods and existing implementations.

In the final part of the course we revisit the limitations of classical quantum
chemistry and take a look at quantum computing and the promises it holds for
solving some really hard technological questions that are currently out of
reach for classical quantum chemistry.

Teaching Methods

Lecture with exercises, coding exercises

Remarks

The lecture will be held in English.

Recommended Literature

- Modern Quantum Chemistry: Introduction to Advanced Electronic Structure
Theory - Attila Szabo, Neil S. Ostlund (ISBN 0486691861)

- Introduction to Computational Chemistry - Frank Jensen (ISBN
1118825993)

- A Chemist's Guide to Density Functional Theory - W. Koch, M. Holthausen
(ISBN 9783527303724)

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

AIX-M-16 ChatGPT et al.: Generative AI with
Transformers

Module code AIX-M-16

Module coordination Prof. Dr. Andreas Fischer

Course number and name AIX-M-16 ChatGPT et al.: Generative AI with
Transformers

Lecturers Zineddine Bettouche

Prof. Dr. Andreas Fischer

Semester 2

Duration of the module 1 semester

Module frequency annually

Course type compulsory course

Level

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination written student research project

Weighting of the grade

Language of Instruction English

47

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

Module Objective

Entrance Requirements

AIX-M-16 ChatGPT et al.: Generative AI with Transformers

Entrance Requirements

Substantial background in artificial intelligence

Learning Content

The module will give an introduction to the transformer technology which drives modern
large language models. Covered topics are:

- Foundations of Language Models
- Word Embeddings
- Attention Mechanism
- Architectures of Transformer Models
- Popular Open Source Transformer Models
- Limitations of Large Language Models
- Applications of Transformers in and beyond NLP
- Optimization of Transformer Models

Type of Examination

written student research project

Methods

Seminaristic education

Recommended Literature

- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural
information processing systems 30 (2017).

- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for
language understanding." arXiv preprint arXiv:1810.04805 (2018).

Faculty Computer Science
AI - X - Electives

04.02.2025 15:45

- Mikolov, Tomas, et al. "Efficient estimation of word representations in vector
space." arXiv preprint arXiv:1301.3781 (2013).

 MET-01 ADVANCED PROGRAMMING TECHNIQUES

Module code MET-01

Module coordination Prof. Dr. Andreas Wölfl

Course number and name MET 1101 Advanced Programming Techniques

Semester 1

Duration of the module 1 semester

Module frequency annually

Course type required course

Level Postgraduate

Semester periods per week

(SWS)

4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination written examination

Weight 5/90

Language of Instruction English

Module Objective

Students of this course extend their software programming abilities by creating and

maintaining a complex computer program in a development team. They learn the

interplay between the design, maintenance and extension steps as applied to a

complex software project.

The students achieve the following learning objectives:

Professional Skills

The students know the elementary workings as well as the application area of

versioning control software. They are able to make good use of such a system in the

context of a software development process.

The students extend their knowledge in the area of object-oriented programming and

are able to confidently apply this programming paradigm to solve complex problems.

The know the basic UML tools and can use them to design an appropriate software

architecture to solve simple problems.

The students are familiar with basic programming patterns. They are able to

implement them where appropriate in their own code. They know about the

development method of test-driven development and are able to create software tests

with which they can estimate the reliability of the software they are developing.

Methodological Skills

The students are able to realize and extend a software project. They can quickly

acquaint themselves with a pre-existing code-base and identify appropriate points for

extending this code-base. They are able to perform a requirements analysis for these

extensions and to develop the respective solutions.

Soft Skills

The students realize a complex software project embedded in a development team.

They are able to coordinate the development process appropriately with their team

members. They can take professional feedback and implement the appropriate

changes to their work.

Applicability in this and other Programs

For this degree program:

Compulsory subject in Electrical Engineering and Information Technology (Master);

joint study, both main subjects

For any other degree program:

Elective for Master Applied Research in Engineering Sciences

Entrance Requirements

Formally: none

In terms of content: Basic education in computer science, proficiency in an object-

oriented programming language

Learning Content

Using versioning control software

The software development process

Requirements analysis

Software architecture with UML

Software design patterns

Unit tests

Test-driven development

Teaching Methods

Lecture with practical exercises

Remarks

Contribution to open-source projects

Recommended Literature

R. Martin: Clean Code: A Handbook of Agile Software Craftsmanship, 1. Auflage,

Prentice Hall 2008.

M. Fowler: Patterns of Enterprise Application Architecture, 1. Auflage, Addison Wesley

2002.

E. Gamma / R. Helm / R. Johnson / J. Vlissides: Design Patterns. Elements of

Reusable Object-Oriented Software, 1. Auflage, Prentice Hall 1994.

A. Hunt / David Thomas / W. Cunningham: The Pragmatic Programmer. From

Journeyman to Master, 1. Auflage, Addison Wesley 1999.

 MET-13 ADVANCED MODELLING AND SIMULATION

Module code MET-13

Module coordination Prof. Dr. László Juhász

Automatisierungstechnik (AT)

Course number and name MET 1106 Advanced Modelling and Simulation

Semester 1

Duration of the module 1 semester

Module frequency annually

Course type required course

Level Postgraduate

Semester periods per week

(SWS)

4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination written ex. 120 min.

Duration of Examination 120 min.

Weight 5/90

Language of Instruction English

Module Objective

The students deal first with problems related to mathematical modelling, parameter

identification, simulation and digital control of technical and especially mechatronics

systems. Furthermore, they learn about the basics of model-based control-design

techniques. Here, not only the user’s sight, but also the developer’s tasks are

discussed. Thus, students learn how to perform successful digital control-design and -

testing using the model-based control-design methods. They are in position to

successfully synthetize such control design as well as to critically evaluate it.

The students achieve the following learning objectives:

Professional Skills

The students are able to describe technical systems by means of mathematical

modelling. They know the basic methods for parameter identification of technical and

mechatronics systems and they apply such methods in practical exercises. They have

the knowledge to create and verify parametrized mathematical models of technical

systems.

Students have deep knowledge about digital control systems and their application

during control-design for mechatronic systems.

Students learn about the basics and advanced methods of model-based digital

control-design.

Students are familiar with the individual elements of the model-based design

technology according to the V-cycle and understand the common elements and the

differences in between them. They are able to evaluate the designed digital controller

by means of offline- and real-time simulation according to the V-cycle standards. On

this way they are able to uncover errors in the control design in the early

development stage.

The Students learn about the software tool-chains based on MathWorks and dSPACE

tools and can apply such tools using the earned knowledge and experience

independently and holistically for the tasks of digital control-design and -testing.

Methodological Skills

Students are familiar with the common methods for mathematical modelling of

technical and mechatronics systems and are able to apply such methods successfully.

Students learn about the methods of parameter identification in time and frequency

domain and use these methods for practical exercises.

Furthermore, students are familiar with the most important methods used by digital

control-design and are able to use these methods successfully.

Students are familiar with the common methods and tools used by the model-based

control-design and are able to apply these methods successfully. Particularly, the

stability criteria of digital simulation used for investigation of analogous and discrete

plants and control systems are well-known. Students are familiar with guidelines for

appropriate design of individual control functions regarding their later application in

RCP, HIL and automatic production code. The earned skills are consolidated through

practical exercises dealing with modelling, code generation and control of an example

application.

Students are familiar with the meaning of real-time requirements and its impact on

control-design and testing by RCP. They are able to apply thins knowledge both for

software and hardware requirements during RCP process successfully. Thus, students

are able to successfully perform function-prototyping by means of RCP for CPU-based

systems and test their design appropriately. Especially he can clarify and analyze the

problems of tasking, configuration of I/O devices and their impact on the real-time

capability.

Students can overview the problems which may arise by the automatic production

code generation and are able to apply optimization methods for minimization of the

CPU-load and memory consumption of the ECU. Especially the design of the optimal

numerical representation of the controller by means of fixed-point data types and

scaling is treated here with emphasis. He is able to create optimal production code

based on a functional model and to perform all the necessary steps on this way in

successful manner. The student is familiar with the testing of the created production

code by means of various simulation types, like MIL, SIL and PIL. He knows the basics

of the integration of the ECU code towards the production prototype.

Students are familiar with the common methods of the HIL-Simulation and they are

able to design and execute a HIL-Simulator for testing of production ECUs. Students

can understand the synergies between the RCP and HIL and are able to apply test-

automatization and virtualization.

Soft Skills

The students are aware their responsibility when work as developer in tasks of model-

based control design and –testing. They are able to assess individual development

steps and are prepared to give feedback and successfully work together in

development teams.

Applicability in this and other Programs

For this degree program:

Compulsory subject within Master-Program Electrical Engineering and Information

Technology, focus automation engineering (AT)

For other degree program:

Optional subject for General Engineering.

Elective for Master Applied Research in Engineering Sciences

Entrance Requirements

Formally: none

Essential thematic prerequisites: Mathematical modelling of linear time-invariant

systems, physical basics and modelling approaches for mechanical and electrical

systems, analogous and digital control design, advanced knowledge of programming

language C.

Learning Content

1. Mathematical modelling of technical systems

1.1. Common approaches for mathematical modelling of technical systems

1.2. Mathematical modelling of mechanical systems

1.3. Mathematical modelling of electrical systems

1.4. Mathematical modelling of hydraulically systems

1.5. Mathematical modelling of heat-transfer systems

1.6. Mathematical modelling of mechatronic systems

1.7. Linearization of non-linear systems in steady-state

1.8. Description of technical systems by means of state-space equations

2. Digital control

2.1. Discrete description of technical systems and the digital control loop

2.2. Discretization of analog plants

2.3. Difference equations and the Z-transformation

2.4. Stability of discrete systems

2.5. Methods of digital control-design

2.6. Discrete state-space equations

3. Parameter-identification of technical and mechatronical systems

3.1. Overview of methods for parameter-identification

3.2. Parameter-identification using time-domain

3.3. Parameter-identification using frequency-domain

3.4. Parameter-identification methods based on spectroscopy

3.5. Parameter-identification methods based on spectral analysis

4. Elements of model-based control-design and -testing

4.1. Model-based control-design according to the V-model

4.2. Offline Simulation

4.3. Rapid Control Prototyping

4.4. Production code generation

4.5. Hardware-in-the-Loop Simulation

4.6. Measurement and calibration

5. Practical exercises

5.1. Modelling and simulation of technical systems: among others example

of an electrical throttle-valve

5.2. Model-based control design and –testing for the position-control of an

electrical throttle-valve

5.3. Testing with RCP through example application: control of an electrical

throttle-valve

5.4. Production-code generation, various examples (among others, control of

an electrical throttle-valve)

Teaching Methods

Teaching lessons, practical exercises (modelling, simulation, control design, testing),

individual and group work

Remarks

Tutorial

E-learning plattform

Recommended Literature

R. Woods / K. Lawrence: Modeling and Simulation of Dynamic Systems. Prentice Hall

1997.

D. Abel / A. Bollig: Rapid Control Prototyping (in German). Springer 2013.

H. Schildt: C++ The Complete Reference, Part I: the C subset. Springer 2013.

Ljung: System Identification: Theory for the User, 2/E. Prentice Hall 1999.

Gajic: Linear Dynamic Systems and Signals. Prentice Hall 2002.

N. Nise: Control Systems Engineering. John Wiley & Sons 2004.

R. Dorf / R. Bishop: Modern Control Systems. Pearson Educational International

2005.

R. Isermann: Grundlegende Methoden, Identifikation dynamischer Systeme, Bd.1.

Springer-Verlag 1992.

R. Isermann: Identifikation dynamischer Systeme II. Besondere Methoden,

Anwendungen. Springer-Verlag 1992.

M. Gipser: Systemdynamik und Simulation. Teubner-Verlag 1999.

R. Nollau: Modellierung und Simulation Technischer Systeme (in German). Springer

2009.

Faculty Computer Science
Automotive Software Engineering

04.02.2025 15:52

ASE-02 Digital Car / Innovation Management &
Customer Design

Module code ASE-02

Module coordination Prof. Dr. Markus Straßberger

Course number and name ASE-02 Digital Car / Innovation Management &
Customer Design

Lecturer Prof. Dr. Markus Straßberger

Semester 1

Duration of the module 1 semester

Module frequency annually

Course type required course

Level Postgraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination Portfolio

Weighting of the grade 5/90

Language of Instruction German

Module Objective

Die Studierenden erhalten einen Einblick in die Herausforderungen und Anforderungen
der aktuellen digitalen und vernetzten Automobiltechnik sowie in deren technologischen
Ansätze und Lösungen. Darüber hinaus werden die methodischen Grundzüge des
Innovationsprozesses in der Automobilindustrie, des nutzerorientierten Designs und des
Lean-Development vermittelt.

Die Studierenden erreichen die folgenden Lernziele bzgl. Fach- und
Methodenkompetenzen

Faculty Computer Science
Automotive Software Engineering

04.02.2025 15:52

Die Studierenden sind in der Lage, die Komplexität einer digitalen Fahrzeugfunktion, deren
Abhängigkeiten und die wesentlichen Kostenfaktoren sowie die größten Fallstricke bei
der Realisierung der jeweiligen Funktionalität im automobilen Umfeld zu verstehen. Sie
können sich leicht in jedes digitale Fahrzeugprojekt einarbeiten.

Entrance Requirements

Learning Content

- Grundlagen des digitalen und vernetzten Fahrzeugs
- Abhängigkeiten und Komplexität in der Fahrzeugentwicklung
- Metoden des Innovationsmanagements im Automobilsektor
- Nutzerorientiertes Design und Lean Development im Kontext digitaler Fahrzeuge

Teaching Methods

Lehre in Form von seminaristischem Unterricht und Gastvorträgen aus der
Automobilbranche.
Hands-On Gruppenarbeiten mit dem Ziel der Erarbeitung neuer Produktideen uaf Basis
nutzenorientierten Desgins.

Type of Examination

project work

Faculty Computer Science
Automotive Software Engineering

04.02.2025 15:52

ASE-03 Advanced Driver Assistance Systems

Module code ASE-03

Module coordination Prof. Thomas Limbrunner

Course number and name ASE-03 Advanced Driver Assistance Systems

Lecturer Prof. Thomas Limbrunner

Semester 1

Duration of the module 1 semester

Module frequency annually

Course type required course

Level postgraduate

Semester periods per week (SWS) 4

ECTS 5

Workload Time of attendance: 60 hours

self-study: 90 hours

Total: 150 hours

Type of Examination Portfolio

Weighting of the grade 5 ECTS

Language of Instruction English

Module Objective

Students are given a basic overview of the systematics of driver assistance systems
and the interaction of the components involved. The aim is to gain an overall system
understanding of the topology in the vehicle and to highlight the key aspects of the
development and function of driver assistance systems.

Applicability in this and other Programs

Master Automotive Software Engineering, Master Applied Research, Master AI, Bachelor
Cybersecurity, B-AI, MT-B, M-AID

Faculty Computer Science
Automotive Software Engineering

04.02.2025 15:52

Entrance Requirements

Undergraduate studies

Learning Content

- Overview of driver assistance systems (definition, classification of relevant terms,
classification, areas of application, legal aspects,
 NCAP, ...)
- System overview of the vehicle from the perspective of driver assistance, understanding
the functional chains, K-matrix,
 mapping of signals
- Sensor technology, measurement and functional principle, such as camera (mono,
stereo), lidar, radar, ultrasound, EGO data
- Central vehicle computer, domain controller, sensor fusion

 Note: The content of the course may change over time and will be continuously adapted
to current technological developments

Teaching Methods

Seminar based teaching combined with practical blocks, as well as some group work or
research with presentation of results

Recommended Literature

[1] Winner, H.; Hakuli, S.: "Handbuch Fahrerassistenzsysteme"
Springer Vieweg Verlag 2012, 2015, 3. Auflage, ISBN: 978-3-658-05733-6

[2] Reif, K.: "Automobil Elektronik", Vieweg Verlag 2006, 1. Auflage, ISBN 3-528-03985-X

[3] Streichert, T.; Traub, M.: "Elektrik/Elektronik Architekturen im Kraftfahrzeug",
Springer Vieweg Verlag 2012, ISBN: 978-3-642-25478-9

[4] Schäufele, J.; Zurawka, T.: "Automotive Software Engineering",
Vieweg Verlag 2003, ISBN: 3-528-01040-1

Type of Examination

Portfolio

	AIN-B-11 Computational Logic
	AIN-B-22 Computer Vision
	AIN-B-19 Natural Language Processing
	AIN-B-20 Human Factors and Human-Machine Interaction
	MAI-FWP Datacenter Network Programming
	LSI-12 Data Visualisation
	HPC-M-04 Software Engineering
	HPC-M-07 High Performance Computing/Quantum Computing Technology
	20230803_Electives_WS.pdf
	AIN-B-13 Databases
	FWP-4 Quantum Computing
	HPC-M-06 Optimization Methods
	MAI-1 Special Mathematical Methods
	FWP-5 Modern Internet Technologies
	LSI-A1 Biomedical Data Analysis

